Perturbation of higher-order singular values

نویسندگان

  • Wolfgang Hackbusch
  • Daniel Kressner
  • André Uschmajew
چکیده

The higher-order singular values for a tensor of order d are defined as the singular values of the d different matricizations associated with the multilinear rank. When d ≥ 3, the singular values are generally different for different matricizations but not completely independent. Characterizing the set of feasible singular values turns out to be difficult. In this work, we contribute to this question by investigating which first-order perturbations of the singular values for a given tensor are possible. We prove that, except for trivial restrictions, any perturbation of the singular values can be achieved for almost every tensor with identical mode sizes. This settles a conjecture from [Hackbusch and Uschmajew, 2016] for the case of identical mode sizes. Our theoretical results are used to develop and analyze a variant of the Newton method for constructing a tensor with specified higher-order singular values or, more generally, with specified Gramians for the matricizations. We establish local quadratic convergence and demonstrate the robust convergence behavior with numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Optimal Controls of a Fuel Cell Coupled with Reformer using Singular Perturbation methods

A singularly perturbed model is proposed for a system comprised of a PEM Fuel Cell(PEM-FC) with Natural Gas Hydrogen Reformer (NG-HR). This eighteenth order system is decomposedinto slow and fast lower order subsystems using singular perturbation techniques that provides tools forseparation and order reduction. Then, three different types of controllers, namely an optimal full-order,a near-opti...

متن کامل

INVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.

متن کامل

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

Singular Perturbation Approximation of Balanced Infinite- Dimensional Systems

This paper concerned with a model reduction of infinite dimensional systems by using the singular perturbation approximation. The system considered is that of the exponentially stable linear system with bounded and finite-rank input and output operators such that the balanced realization can be performed on the system. Furthermore, the singular perturbation method is applied to reduce the order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016